

Silent Signal Kft.

E-mail: vpbalint@silentsignal.eu

Web: www.silentsignal.eu

Budapest, 2018.01.08.

Background .. 3

Self-Defense .. 4

Crossing Privilege Boundaries ... 5

1. Quarantine Restoration .. 5

2. Other potential vectors .. 6

Exploitation .. 8

1. Symantec .. 8

1.1. Symantec Norton Security Deluxe .. 8

1.2. Symantec Endpoint Protection ... 9

2. Kaspersky Labs ... 11

2.1. Home Products .. 11

2.2. Business Products .. 12

3. Bitdefender ... 12

3.1. Bitdefender Antivirus Plus 2018 .. 12

3.2. Bitdefender Gravityzone .. 14

Conclusions .. 15

Endpoint security software is the most basic element of virtually every defensive system from home users

to large enterprises. In order to have a detailed view on the protected system and to be able to counter
malware appearing in the context of any system component these products require unrestricted

privileges to function properly. This of course introduces new risks as it has been demonstrated

numerous times in the past1.

In modern Windows systems privileged features are generally implemented in kernel drivers and user-

mode services running with high privileges (usually SYSTEM). Additionally, low-privileged processes

provide user interfaces through which malware scans can be initiated, the software can be configured,

etc. Since these user interfaces usually allow to disable software features and hide running malware
different “self-defense” (or “tamper protection”) mechanisms are implemented on in parallel with

standard OS security features that prevent interference even with the low-privileged components.

In this research we demonstrate a self-defense bypass method that can be used against endpoint

security products of multiple vendors. Next, we demonstrate that self-defense may hide exploitable
attack surface that allows local privilege escalation.

During the research the following products were tested:

• Kaspersky Labs

o Kaspersky Free (18.0.0.405)

o Kaspersky Antivirus (17.0.0.611)

o Kaspersky Endpoint Security (10.3.0.6294)

• Symantec

o Symantec Norton Security Deluxe (22.10.1.10)

o Symantec Endpoint Protection (14.0.3752.1000.105)

• Bitdefender

o Bitdefender Antivirus Plus 2018 (22.0.8.992)

o Bitdefender Gravityzone (Endpoint Security Tools 6.2.25.953)

• Comodo

o Comodo Internet Security Premium (10.0.1.6258)

• Trend Micro

o Trend Micro Maximum Security (22.10.1.10)

Generic self-defense bypass was demonstrated against all of the above products. Local privilege

escalation exploits were demonstrated against products set in bold3. The described techniques may be

applicable to a wider range of products.

1 https://www.google.hu/search?q=site:https://bugs.chromium.org/p/project-zero/+"antivirus"

http://joxeankoret.com/download/breaking_av_software_44con.pdf

https://cansecwest.com/csw08/csw08-alvarez.pdf

http://www.securityfocus.com/news/11426
2 File version of bdusers.dll
3 Trend Micro was also found to be vulnerable by an independent researcher, see Quarantine Restoration

https://www.google.hu/search?q=site:https://bugs.chromium.org/p/project-zero/+%22antivirus
http://joxeankoret.com/download/breaking_av_software_44con.pdf
https://cansecwest.com/csw08/csw08-alvarez.pdf
http://www.securityfocus.com/news/11426

The starting point of this research was a self-defense bypass technique we discovered while analyzing

the COM hijacking technique as demonstrated by James Forshaw to exploit Oracle VirtualBox for

privilege escalation4. In short, the technique builds on the fact that while COM objects are usually

registered in the HKLM registry tree, users can register alternative DLL’s in their respective HKCU tree.

These user-specific registrations take precedence in the COM loading process, the lookup looks like this
in Process Monitor:

First, the CLSID is looked for in the HKU subtree corresponding to the process owner, if not found,

Windows proceeds to the HKCR tree where in this case the object is registered. Since users are allowed
to write to their corresponding HKU subtree applications can be forced to load user-specified libraries.

In case of the CVE-2017-3563 VirtualBox vulnerability it was also demonstrated that signature checks of

the loaded DLL can be bypassed by loading the Microsoft signed scrobj.dll library that allows the

attacker to invoke dynamic, unsandboxed JScript and eventually .NET code. With this code the memory
of the hijacked process can be arbitrarily manipulated, API calls can be made etc.

What should be noted is that the above technique is especially useful in cases when a low-privileged

process is granted special rights to control high-privileged system components. As we saw in the previous
section, endpoint security software operates in a really similar architecture. The first question is: can this

technique be applied to endpoint security software, too?

Our tests showed that the proof-of-concept code published by James Forshaw can be used without

modification (after replacing the CLSID’s to be hijacked) to achieve code injection to the user-level
components of all tested products, with self-defense enabled. The tests also showed that only the

antivirus engine of Kaspersky Labs detected our injected scriptlets (.SCT files - code injection proof-of-

concepts and full privilege escalation exploits) as potentially malicious. In case of Kaspersky products,
detection could be avoided by providing a http:// URL in the registry, and serving the file from a remote

network location.

The second question is whether the ability to execute code in the UI processes of the target products

allows access to functionality that lets an attacker cross the security boundaries of the operating system.
In case of VirtualBox, the ability of the user process to access kernel memory via a driver is an obvious

attack surface, as it is documented by the developers5. While in some cases self-defense bypasses in

themselves are considered as security issues (e.g. CVE-2017-6331), the potential for OS privilege
escalation is less obvious in case of endpoint security software. In the following section, we will explore

common software functionality that could allow such attacks.

4 https://googleprojectzero.blogspot.hu/2017/08/bypassing-virtualbox-process-hardening.html

https://bugs.chromium.org/p/project-zero/issues/detail?id=1103
5 https://www.virtualbox.org/browser/vbox/trunk/src/VBox/HostDrivers/Support/SUPR3HardenedMain.cpp#L39

https://googleprojectzero.blogspot.hu/2017/08/bypassing-virtualbox-process-hardening.html
https://bugs.chromium.org/p/project-zero/issues/detail?id=1103
https://www.virtualbox.org/browser/vbox/trunk/src/VBox/HostDrivers/Support/SUPR3HardenedMain.cpp#L39

In this section, we explore features generally available in endpoint security products that may be useful

to cross privilege boundaries of the operating system and achieve privilege escalation. While

configuration changes that allow easier deployment of malware may be practically useful, we are not

covering these methods as they are mostly trivial.

For the feature to be abusable the following Requirements must meet:

R1. The feature should be available to the attacker. (Access)

R2. The action executed through the feature should be performed with high user privileges.

(Elevation)

R3. The attacker should be able to manipulate the subject of the action. (Control)

Our research focused on cases where Access or Control could be gained after self-defense is bypassed.

We will see that it is possible to circumvent important security measures by only manipulating processes

running under our own user account. We will also see that in some cases all requirements meet by

default, and full control over the processes of the target application is not required.

The following subsections provide examples meeting these criteria, while the Exploitation section
describes practical implementations of attacks based on one of the identified features.

1. Quarantine Restoration

In order to reduce the impact of potential false positive detections, endpoint security products allow

some users to restore quarantined files. The right to restore files is handled differently by each product,

and may be configured by a central policy.

The quarantined files can belong to any user, and encryption keys for quarantined files need to be
protected. Therefore, the restoration process is not done by the UI process running with the privileges of

the current user. Instead, this process signals another process that usually runs with SYSTEM privileges
to do the restoration. Thus, if not implemented with care, the restored file is created with SYSTEM

privileges, providing venue for privileged file-writes that can easily result in local privilege escalation on

Windows operating systems.

For requirement R1. we observed the following behaviors with different endpoint security products:

A1. The feature is always available for every user.

A2. The access to the feature can be configured for different users and privileges.

a. Policy is enforced by low-privilege component

b. Policy is enforced by a high-privilege component

A3. The feature is always available to administrators only.

In case of A1. exploitation is trivial. Several products implement a configurable system conforming to

A2.a which is exploitable if self-defense is bypassed. Examples of these scenarios are detailed in the

Exploitation section. In case of A2.b and A3. exploitation of the Quarantine feature is not possible

According to our experiences, requirement R2. is usually met, probably as a result of design decisions:

allowing users to handle false positive detections affecting system components or the product itself6.

Alternative solutions could employ impersonation (as we will see in the case of KES), request elevation

(UAC) or simply perform restoration from the low-privileged process to avoid unintended high-privileged

file writes and prevent exploitation.

R3 can be met in several ways, because multiple edge cases must be handled during the restoration
process:

6 https://www.theregister.co.uk/2015/05/07/avast_false_positive_snafu/
http://www.zdnet.com/article/sophos-antivirus-detects-own-update-as-false-positive-malware/

https://www.theregister.co.uk/2015/05/07/avast_false_positive_snafu/
http://www.zdnet.com/article/sophos-antivirus-detects-own-update-as-false-positive-malware/

E1. Regular file exists at the destination path

E2. Destination directory no longer exists

E3. The destination contains links or junctions

E4. The destination is on a remote computer

In any of these cases the application may require user input (thus giving Control) to determine the path

to which the file will be restored. It’s important to note that the above scenarios can come up multiple

times during the restoration process. For example, E1. can come up after the software lets the user

choose an arbitrary new destination path while handling E2. During our research, we found that both E1.

and E2. can trigger application features that allow users to choose arbitrary destination paths for the files
to be restored. While additional checks may be implemented during the handling of these edge cases,

only the checks performed by high-privileged components can be effective security measures, otherwise

they can be disabled after successful self-defense bypass. Examples of the latter are also included in the

Exploitation section.

Additionally, Florian Bogner published an independent research dubbed as AVGater7 that also abuses

the AV quarantine restore feature and relies on NTFS directory junctions to trick the high-privileged AV
components to write to sensitive file system locations (E3).

Forcing high-privileged processes to access remote locations (E4.) can result in leak of user credentials,

as it was demonstrated by James Forshaw of Google Project Zero8 and by the “Hot Potato” attack of
FoxGlove Security9. Interestingly, the Project Zero research also targeted an endpoint security product
(Windows Defender). This previous research demonstrated that high-privileged remote file access is

achievable with generally unrestricted product features (user initiated scans) so this exploitation path

was no further researched.

2. Other potential vectors
Quarantine restoration proved that self-defense can hide exploitable attack surface if protective

application policy is enforced by the low-privileged component of the target (A2.a). During our research

we also experimented with additional, potentially exploitable application features:

Some products may allow users to manually move files to the quarantine – this may allow using the

product to implement custom security controls, and to crowdsource information about previously

unknown malware. This feature (together with restoration) may allow arbitrary file reading with SYSTEM

privileges. We wanted to implement such an exploit for Symantec Endpoint Protection, but contrary to

the quarantine restoration feature (that is exploitable as described in section 1.2 of the Exploitation part),

the software implements impersonation when manually adding items to the quarantine, which is a

secure solution. It could be demonstrated though, that access checks are performed from the low-

privileged process, after which the file path can be modified before it is passed to the high-privileged

service.

As a superset of quarantine-based attacks, any file access features may be susceptible. These features

commonly include secure file removal (“file shredding”), encryption and import/export of application

data (logs, settings, etc.). For example, in case of Kaspersky home products, the “Settings export” feature

can be used to overwrite arbitrary files with SYSTEM privileges if the attacker controls the UI process.

Although the contents of the resulting file can only be controlled in small parts, data of other users can

be corrupted (loss of integrity or availability), and even complex attacks relying on file polyglots or fail-

open configurations may be implemented.

7 https://bogner.sh/2017/11/avgater-getting-local-admin-by-abusing-the-anti-virus-quarantine/
8 https://bugs.chromium.org/p/project-zero/issues/detail?id=222&redir=1
9 https://foxglovesecurity.com/2016/01/16/hot-potato/

https://bogner.sh/2017/11/avgater-getting-local-admin-by-abusing-the-anti-virus-quarantine/
https://bugs.chromium.org/p/project-zero/issues/detail?id=222&redir=1
https://foxglovesecurity.com/2016/01/16/hot-potato/

All the above vectors rely on standard application features, and are aimed to circumvent file system

access controls. Features unrelated to direct file access (such as system-wide network settings, SSL/TLS

interception) may also open venues for interesting attacks. Discovering exploitable functionality not

intended for application users (e.g. debug features, verification of updates) may yield even more

powerful vectors.

The bottom line is that quarantine restoration is just an example of exploitable attack surface. The

outlined requirements are applicable outside of the scope of the quarantine, security critical checks are

implemented in low-privileged components in case of other features too. These components are only

protected by application-specific self-defenses, and their security can’t be guaranteed by the operating

system. Thorough exploration of this attack surface requires further research.

The user-mode components of endpoint protection software can be thought of in a client-server model

where the UI process of the product acts as the client and the high-privileged service as the server. In

case of common client-server applications (like web applications) implementing security checks at

client-side is generally considered as bad practice. However, in case of our targets, self-defense may be

taken as a security boundary that allows moving such checks (and thus complexity) away from the main
component.

As we will see, different endpoint security products perform “client-side” checks only to protect sensitive

features. The following subsections describe the implemented security features, and the techniques we

developed for their bypass after in-process code execution was achieved via COM hijacking. After self-

defense is breached the products allow performing privileged actions without performing further checks

in higher-privileged components. We will also see that some products don’t implement protections in
the UI process either, making exploitation trivial.

1. Symantec

In case of Norton Security, only administrative users (the user Administrator or members of the
Administrators group) can access sensitive actions such as quarantine restore. The user interface that

allows access to these settings runs as a process of the currently logged in user (NS.exe).

NS.exe is responsible for checking if the current user is an administrator. It performs this check via the
ccLib.dll library that performs a series of calls to the GetTokenInformation() API with the current

process token. One of the checks compares the group SID's associated with the current token with the
SID of the BUILTIN\Administrators group. For this check ccLib.dll constructs the group SID by

invoking the AllocateAndInitializeSid() API as follows (module base is at 0x10000000)10:

.text:1006006F push ebx

.text:10060070 push edi

.text:10060071 or [ebp+TokenHandle], 0FFFFFFFFh

.text:10060078 lea eax, [ebp+pSid]

.text:1006007E push eax ; pSid

.text:1006007F xor ecx, ecx

.text:10060081 mov word ptr [ebp+pIdentifierAuthority.Value+4], 500h

.text:10060087 push ecx ; nSubAuthority7

.text:10060088 push ecx ; nSubAuthority6

.text:10060089 push ecx ; nSubAuthority5

.text:1006008A push ecx ; nSubAuthority4

.text:1006008B push ecx ; nSubAuthority3

.text:1006008C push ecx ; nSubAuthority2

.text:1006008D push 220h ; nSubAuthority1

.text:10060092 push 20h ; nSubAuthority0

.text:10060094 push 2 ; nSubAuthorityCount

.text:10060096 lea eax, [ebp+pIdentifierAuthority]

.text:10060099 mov [ebp+pSid], ecx

10 ccLib.dll version 15.0.0.80
SHA-256: bea0fa64f24faf5f27a87fb8ff7b9632646d0565f871664a200969224e827406

.text:1006009F mov bl, cl

.text:100600A1 mov dword ptr [ebp+pIdentifierAuthority.Value], ecx

.text:100600A4 push eax ; pIdentifierAuthority

.text:100600A5 mov [ebp+var_A8], ebx

.text:100600AB call ds:AllocateAndInitializeSid

.text:100600B1 test eax, eax

.text:100600B3 jnz short loc_100600FF

As we can see, two sub-authorities are set. One of these, nSubauthority1 is set to the value 0x220 that

(together with nSubAuthority0) represents the BUILTIN\Administrators group. By patching this
value to 0x221, the library will check the membership to the BUILTIN\Users group instead, that will

result in a successful lock-out of the administrative features of the user interface, including Quarantine

restore.

Norton Security allows trusted users (administrators) to restore quarantined files. Since the quarantined

files can belong to any user, the restoration process is not done by the UI process running with the

privileges of the current user. Instead, this process signals another instance of NS.exe running with
SYSTEM privileges to do the restoration. The restored file is thus created with SYSTEM privileges.

This process can be easily abused because Norton Security lets the user choose an arbitrary restoration
path if a file already exists at the original path of the quarantined file (edge case E1.).

For our tests, Symantec Endpoint Protection (SEP) was installed with an installation package generated

by Symantec Endpoint Protection Manager with its default policy. This policy allows regular users to
restore files from the quarantine, and there is no option to configure it other ways. SEP also allows adding

arbitrary files to the quarantine and choosing arbitrary restore locations. However, the UI process
(SymCorpUI.exe) of SEP also performs privilege checks before signaling the high-privileged endpoint

component (ccSvcHst.exe) to restore files by attempting to create an empty file in the destination

restore directory. This check is of course insufficient if an attacker can control the UI process and fake
the results of the privilege check or manipulate the path sent to the high-privileged process.

In the SymCorpUI.exe process the CliProxy.DLL library provides the IPC interface to

ccSvcHost.exe. During the restore process this DLL is invoked first at offset 0x3653011:

.text:00036530 push ebp

.text:00036531 mov ebp, esp

.text:00036533 sub esp, 8

.text:00036536 mov eax, ___security_cookie

.text:0003653B xor eax, ebp

.text:0003653D mov [ebp+var_4], eax

.text:00036540 mov eax, [ebp+arg_0]

.text:00036543 push esi

.text:00036544 mov esi, [ebp+restore_path]

.text:00036547 push edi

.text:00036548 mov edi, [eax+150h]

.text:0003654E call sub_345B0

11 File version: 14.0.3752.1000
SHA-256: d0fd4d5a7b340b125595665f60f083c39f6e5fceedc3766d1a649226679d1bc5

.text:00036553 test eax, eax

.text:00036555 jnz short loc_3656E

.text:00036557 pop edi

.text:00036558 mov eax, 20000046h

.text:0003655D pop esi

.text:0003655E mov ecx, [ebp+var_4]

.text:00036561 xor ecx, ebp

.text:00036563 call @__security_check_cookie@4 ; __security_check_cookie(x)

.text:00036568 mov esp, ebp

.text:0003656A pop ebp

.text:0003656B retn 10h

.text:0003656E loc_3656E:

.text:0003656E mov edx, [ebp+arg_4]

.text:00036571 lea eax, [ebp+var_8]

.text:00036574 push eax

.text:00036575 push [ebp+arg_C]

.text:00036578 mov ecx, edi

.text:0003657A push esi ; file name

.text:0003657B push 0

.text:0003657D mov [ebp+var_8], 0

.text:00036584 call restore_func0_

At 0x36544 the address of the destination path string passed as function argument is stored in the ESI

register. From 0x36553 the return value of a function call is checked, and the function exits if an error is
reported, otherwise execution is resumed at the 0x3656E basic block that proceeds with the restoration,

using the value in ESI. Our exploit patches the error handler branch: we remove the call to the stack

cookie check and use the freed space to load the address of a new destination path string (allocated from
the injected .NET code) into the ESI register:

85c0 test eax, eax

7517 jne 0x1b

5f pop edi

b846000020 mov eax, 0x20000046

5e pop esi

8b4dfc mov ecx, dword [ebp - 4]

33cd xor ecx, ebp

e84a350000 call 0x355f

8be5 mov esp, ebp

5d pop ebp

c21000 ret 0x10

be12345678 mov esi, 0x78563412

85c0 test eax, eax

7512 jne 0x1b

5f pop edi

b846000020 mov eax, 0x20000046

5e pop esi

8b4dfc mov ecx, dword [ebp - 4]

33cd xor ecx, ebp

8be5 mov esp, ebp

5d pop ebp

c21000 ret 0x10

This way ccSvcHost.exe will receive a different path that was checked by the UI process. Of course,

more complex logic can be implemented by performing a CALL to some shellcode instead of a simple

MOV.

2. Kaspersky Labs

Kaspersky Antivirus, Free Antivirus and Internet Security products allow quarantine restore for any user.
No file system ACL checks are performed and users can choose arbitrary restore locations for

quarantined files in case the original directory of the quarantined item no longer exists. This makes local

privilege escalation trivial.

Aside of the quarantine, several product features are present which may be protected with a password.

The password itself is checked by a high-privilege process (avp.exe), but it is the UI process

(avpui.exe) that passes the MD5 hash of the provided password (through standard Windows RPC) and
checks if avp.exe reports success or failure. The check is performed by avpuimain.dll12

.text:0000EECD mov eax, [ebp-1Ch]

.text:0000EED0 lea edx, [ebp-3Ch]

.text:0000EED3 push edx

.text:0000EED4 push eax

.text:0000EED5 mov ecx, [eax]

.text:0000EED7 call dword ptr [ecx+0Ch]

.text:0000EEDA mov esi, eax

.text:0000EEDC pop ecx

.text:0000EEDD pop ecx

.text:0000EEDE test esi, esi

.text:0000EEE0 jns short loc_EF61

...

.text:0000EF61 loc_EF61: ; CODE XREF: sub_EDA5+13Bj

.text:0000EF61 xor eax, eax

.text:0000EF63 cmp esi, 1

.text:0000EF66 setnz al

.text:0000EF69 mov [ebx], al ; Set success/failure

.text:0000EF6B test al, al

.text:0000EF6D jz short loc_EF79

.text:0000EF6F cmp byte ptr [ebp+10h], 0

.text:0000EF73 jz short loc_EF79

.text:0000EF75 mov byte ptr [edi+18h], 1

After code injection is performed via COM hijacking, the attacker can patch offset 0xEF66 so that EAX will
have a positive value. This way the UI will accept any password (but the correct one), and the attacker

can access functionality like exclusion lists of settings import/export (see Other potential vectors) or he

can simply disable protection – the avp.exe process will not perform further security checks.

12 DLL version: 18.0.0.495
SHA-256: 37fe075f4eb8795b9b2fc61abd96a0f87f67a4f154e5dd9b40d7d9de65a030bb

After succeeding with multiple home products, we tried the same techniques against Kaspersky Endpoint

Security, which is the endpoint agent installed by the business products of the vendor. As it turned out,

in this case, the privileged avp.exe process performs impersonation while processing the request of the

UI process:

It seems that while home products can be trivially exploited, Kaspersky has a secure solution in its

business products.

3. Bitdefender

In case of Bitdefender Antivirus Plus 2018 only administrative users (the user Administrator or members

of the Administrators group) can access sensitive options such as quarantine restore. The user process

seccenter.exe is responsible for checking if the current user is an administrator. It performs this check
via the bdusers.dll library that performs a series of calls to the CheckTokenMembership() API with

the current process token. The API is always called via a wrapper function that creates a SID object based

on the function arguments and compares it with the provided token handle by invoking
CheckTokenMembership() (module base is at 0x180000000)13:

.text:0000000180005140 mov [rsp+arg_10], rbx

.text:0000000180005145 push rdi

.text:0000000180005146 sub rsp, 80h

.text:000000018000514D mov rax, cs:__security_cookie

.text:0000000180005154 xor rax, rsp

.text:0000000180005157 mov [rsp+88h+var_10], rax

.text:000000018000515C xor edi, edi

.text:000000018000515E mov [rsp+88h+pIdentifierAuthority.Value+4], 500h

.text:0000000180005165 lea rax, [rsp+88h+SidToCheck]

.text:000000018000516A mov [rsp+88h+IsMember], edi

.text:000000018000516E mov [rsp+88h+pSid], rax ; pSid

13 DLL version: 22.0.8.99
SHA-256: c3b020178b1c85c99af58f61aaff149588bb008835252fc774fecf4686ed2139

.text:0000000180005173 mov rbx, rcx

.text:0000000180005176 mov [rsp+88h+nSubAuthority7], edi ; nSubAuthority7

.text:000000018000517A lea rcx, [rsp+88h+pIdentifierAuthority]

.text:000000018000517F mov [rsp+88h+nSubAuthority6], edi ; nSubAuthority6

.text:0000000180005183 lea r8d, [rdi+20h] ; nSubAuthority0

.text:0000000180005187 mov [rsp+88h+nSubAuthority5], edi ; nSubAuthority5

.text:000000018000518B mov r9d, edx ; nSubAuthority1

.text:000000018000518E mov [rsp+88h+nSubAuthority4], edi ; nSubAuthority4

.text:0000000180005192 mov dl, 2 ; nSubAuthorityCount

.text:0000000180005194 mov [rsp+88h+nSubAuthority3], edi ; nSubAuthority3

.text:0000000180005198 mov [rsp+88h+nSubAuthority2], edi ; nSubAuthority2

.text:000000018000519C mov dword ptr [rsp+88h+pIdentifierAuthority.Value], edi

.text:00000001800051A0 mov [rsp+88h+SidToCheck], rdi

.text:00000001800051A5 call cs:AllocateAndInitializeSid

.text:00000001800051AB test eax, eax

.text:00000001800051AD jz short loc_1800051DA

.text:00000001800051AF mov rdx, [rsp+88h+SidToCheck] ; SidToCheck

.text:00000001800051B4 lea r8, [rsp+88h+IsMember] ; IsMember

.text:00000001800051B9 mov rcx, rbx ; TokenHandle

.text:00000001800051BC call cs:CheckTokenMembership

.text:00000001800051C2 mov ecx, [rsp+88h+IsMember]

.text:00000001800051C6 test eax, eax ; PATCH: inc rcx

.text:00000001800051C8 cmovz ecx, edi ; nop

.text:00000001800051C8 ; nop

.text:00000001800051C8 ; nop

.text:00000001800051CB mov [rsp+88h+IsMember], ecx

.text:00000001800051CF mov rcx, [rsp+88h+SidToCheck] ; pSid

.text:00000001800051D4 call cs:FreeSid

.text:00000001800051DA

.text:00000001800051DA loc_1800051DA:

.text:00000001800051DA mov eax, [rsp+88h+IsMember]

.text:00000001800051DE mov rcx, [rsp+88h+var_10]

.text:00000001800051E3 xor rcx, rsp

.text:00000001800051E6 call sub_180005EC0

.text:00000001800051EB mov rbx, [rsp+88h+arg_10]

.text:00000001800051F3 add rsp, 80h

.text:00000001800051FA pop rdi

.text:00000001800051FB retn

To bypass the check for administrative privileges, the DLL (loaded via COM registration) will patch offset

0x51C6 to set the RCX register that will later determine the return value of the function while removing
the original checks of the return values of the CheckTokenMembership() API. The patch code can be

seen as comment in the above listing from offset 0x51C6. This way all the functions that use the patched

wrapper will see that any token is member of any given group, including Administrators. This way all

features available for administrators will be available to the regular user of the attacker. After privilege

checks are bypassed, the quarantine restore feature can be abused because Bitdefender lets the user

choose an arbitrary restoration path if the folder the file was quarantined from doesn't exist anymore
(edge case E2.).

Unlike its counterpart intended for home use, the endpoint agent of Bitdefender Gravityzone
(Bitdefender Endpoint Security Tools - BEST) - configured with the default – allows any user to restore

quarantined files to arbitrary file system locations:

This means that while Bitdefender’s home product at least tries to cover this attack surface, the business

version doesn’t even require self-defense bypass to be exploited. It’s worth noting though that the BEST

client provides a highly restricted set of functionalities, most configurations and actions can only be

initiated from the cloud console by design.

In this paper we demonstrated a generic self-defense bypass method against several endpoint security

products. While the utilized COM hijacking technique was known for a long time14, its applicability to

endpoint security products was not recognized by the affected vendors during this period.

It’s important to note that COM hijacking is just one technique for self-defense bypass. Since the self-

defense mechanisms generally don’t operate within the operating systems security model, we shouldn’t

see them as a security boundary that can be relied on to protect sensitive application functionality.

We demonstrated that if the assumption about the robustness of self-defense is broken, endpoint

security products expose an architecture that can be exploited to achieve local privilege escalation. Just
like the utilized self-defense bypass technique, the most significant vector for privilege escalation

(quarantine restoration) has been present in the affected products for several years. Interestingly, this

vector was just recently publicized in parallel with our research (under the AVGater “brand”) indicating a

convergence of research in this field. In addition to the findings of AVGater, our research showed that

product features may be exploitable even if their use is prohibited by application configuration. This is

because the affected products implement security checks in low-privileged (“client-side”) components,

which aren’t meant to be protected by the operating system from interference by the process owner. We

also found that other product features may also be abused to cross OS privilege boundaries although
these vectors seem less powerful.

Researching multiple vendors showed that different products of the same vendors implement the same
features in both secure and insecure ways. This may indicate differences in the quality assurance

processes of the respective product teams or even conscious design decisions (or acceptance of risk).

We’ve been monitoring the exploitability of the targeted products since July 2017. Our additional findings

and demonstration materials of the described vulnerabilities will be continuously updated on our blog:

https://blog.silentsignal.eu/2018/01/08/bare-knuckled-antivirus-breaking/

14 https://attack.mitre.org/wiki/Technique/T1122

https://blog.silentsignal.eu/2018/01/08/bare-knuckled-antivirus-breaking/
https://attack.mitre.org/wiki/Technique/T1122

